DATA SHEET

■ High Fidelity Polymerase

Thermostable DNA polymerase for high accuracy Thermus species, recombinant, *E. coli*

Cat. No.	Amount
PCR-204S	100 units
PCR-204L	500 units

Unit Definition: One unit is defined as the amount of the enzyme required to catalyze the incorporation of 10 nmol of dNTP into an acid-insoluble form in 30 minutes at 74 °C.

For general laboratory use.

Shipping: shipped on gel packs **Storage Conditions:** store at -20 °C

Additional Storage Conditions: avoid freeze/thaw cycles

Shelf Life: 12 months

Form: liquid

Concentration: 2.5 units/µl

Description:

High Fidelity Pol is based on a blend of Taq DNA polymerase and a proofreading enzyme specially designed for highly accurate and efficient amplification. It shows excellent results with extremely long (up to 30 kb), GC-rich or other difficult templates.

The enzyme blend includes a highly processive $5' \rightarrow 3'$ DNA polymerase and possesses a $5' \rightarrow 3'$ polymerization-dependent exonuclease replacement activity. Its inherent $3' \rightarrow 5'$ exonuclease proofreading activity results in a greatly increased fidelity of DNA synthesis compared to Taq polymerase.

The enzyme is highly purified and free of bacterial DNA.

Fidelity of the enzyme:

High Fidelity Pol is characterized by a 4-fold higher fidelity compared to Taq polymerase.

 $ER_{High\ Fidelity\ Pol} = 3.4 \times 10^{-6}$

The error rate (ER) of a PCR reaction is calculated using the equation $ER = MF/(bp \times d)$, where MF is the mutation frequency, bp is the number of base pairs of the fragment and d is the number of doublings

 $(2^d = amount of product / amount of template).$

Content:

High Fidelity Pol (red cap)

2.5 units/µl High Fidelity Polymerase in storage buffer

High Fidelity Buffer (green cap)

10x conc.

Recommended 50 µl PCR assay:

5 μl	10x High Fidelity Buffer	green cap
200 μΜ	each dNTP	-
0.2 - 0.5 μΜ	each Primer	-
1 - 100 ng	template DNA	-
0.5 μl (1.25 units)	High Fidelity Pol	red cap
Fill up to 50 μl	PCR-grade water	-

Please note that it is essential to add the polymerase as last component.

Recommended cycling conditions:

necommon de dy came de constant de constan					
initial	94 °C	2 min	1x		
denaturation					
denaturation	94 °C	20 sec	20-30x		
annealing ¹⁾	50 - 68 °C	30 sec	20-30x		
elongation ²⁾	68 °C	1 min/kb	20-30x		
final elongation	68 °C	1 min/kb	1x		

 $^{^{1)}}$ The annealing temperature depends on the melting temperature of

DATA SHEET

High Fidelity Polymerase

Thermostable DNA polymerase for high accuracy Thermus species, recombinant, *E. coli*

the primers used.

²⁾The elongation time depends on the length of the fragments to be amplified. A time of 1 min/kb is recommended.

For optimal specificity and amplification an individual optimization of the recommended parameters may be necessary for each new template DNA and/or primer pair.

Related Products:

Ready-to-Use Mixes / direct gel loading Ready-to-Use Mixes Thermophilic Polymerases Deoxynucleotides (dNTPs) Supplements Primers and Oligonucleotides DNA Ladders