
DATA SHEET

5'-Azido-puromycin

Acetate salt

Cat. No.	Amount
CLK-110-S	0,5 mg (1 μmol)
CLK-110-L	10 x 0,5 mg (10 μmol)

Structural formula of 5'-Azido-puromycin

For general laboratory use.

Shipping: shipped on gel packs

Storage Conditions: store at -20 °C

Short term exposure (up to 1 week cumulative) to ambient

temperature possible.

Shelf Life: 12 months after date of delivery **Molecular Formula:** C₂₂H₂₈N₁₀O₄ (free amine) **Molecular Weight:** 496.53 g/mol (free amine)

Exact Mass: 496.23 g/mol (free amine)

Purity: ≥ 95 % (HPLC)

Form: solid
Color: colorless

Solubility: DMSO, PBS (up to 50 mM tested) pH adjusted to 5.0 **Spectroscopic Properties:** λ 268 nm, ϵ 19.5 L mmol⁻¹ cm⁻¹ (0.1 M HCl)

Description:

Gee et al.^[1] reported a non-radioactive alternative to analyze newly synthesized proteins in cell culture that is based on 5'-Azido-puromycin, an azide analog of puromycin.

5'-Azido-puromycin is cell-permeable and incorporates into the C-terminus of translating polypeptide chains thereby stopping translation.

The resulting truncated C-terminal azide-labeled proteins can subsequently be detected *via* copper-free click chemistry that offers the choice to introduce a Biotin group (*via* DBCO-modified Biotin) for subsequent purification tasks or a fluorescent group (*via* DBCO-modified fluorescent dyes) for subsequent microscopic imaging.

Selected References:

Gee et al. (2016) Puromycin Analogues Capable of Multiplexed Imaging and Profiling of Protein Synthesis and Dynamics in Live Cells and Neurons. Angew. Chem. Int.Ed.55: 4933.